Addressing the questions in the following checklists can help to direct and improve your chances of AI success by improving its documentation and knowledge-sharing practices. Further, they can serve to mitigate business risk by uncovering unforeseen hazards to data quality.
The AI why
In line with its information needs, culture, organisational objectives and strategy for competitive success, what are your organisation’s AI-system objectives?
What must be achieved through AI by documenting the knowledge of the organisation?
What information must be shared at this stage to be developed and refined through workplace collaboration to ensure that nothing gets overlooked?
Audiences
Who must be satisfied by your development and delivery of AI content?
Among these groups may be:
- Leaders, whose support the designers, developers and managers of the system will need.
- Managers who have to sign off content, such that it can be fed to the AI engine.
- Developers who are needed to build on it and design from its outputs and user feedback.
- Workplace users who must use it to perform their daily work, and to rate and feed back requirements of it as it evolves.
- Customers and partners who will use it externally to buy through it and receive service.
In what ways must the system enable the organisation to interact with these strategic stakeholder groups:
- The board, management committee or equivalent
- Shareholders, owners or equivalent
- Executive or senior management team
- Middle management
- Front-line supervisors or first-level managers
- Employees
- Strategic partners or allies
- Major suppliers and services providers
- The wider investment community
- Industry or general media
- The general community or other stakeholders
Content
- What are the critical strategic knowledge assets of the organisation?
- What content must be captured and with what frequency to grow this?
- How will decisions be made about the best ways to document and report on what is captured, and to whom?
- What are the most important things that discrete groups need to know in order to do their jobs effectively?
- What are the critical processes, procedures, best practices, customer insights, and technical information around which AI improvements must be focused and driven?
Workplace technologies for knowledge capture
- What tools will you use, and through which channels will you capture and process content?
- How will data be stored and processed through its various stages of development?
- How, and by whom, will the system itself be documented for management review?
- How will system access and security be managed?
- How will system usage and success be measured?
Style rules
- How must documents be structured to enable reliable machine learning?
- What conventions will be used in individual documents to address meaning, spelling, punctuation, names, currencies, technical measures and conversions?
- Who will enforce style and document consistency, and where will its requirements be made accessible across the business?
Contributors and process
- What will be the process for capturing new insights and knowledge?
- As described above, who will commission new documentation, spelling out its requirements?
- Who will be the initial contributors, creating and feeding new content into your system?
- At what stage will new content be exposed to its first audiences, and who will be first readers/reviewers of new content?
- Which subject matter experts will be needed/invited to review new content, and at which stages of document development will their input kick in?
- How will the cycle of review be managed?
- Who will act as final style policemen?
- Who will sign content off as being complete?
Participation protocols and engagement strategies
- How can contributors test their documentation prior to exposing it to wider exposure?
- How will users be trained and introduced to the system?
- Will users be allowed to comment anonymously about new content?
- How may participants be rewarded for their contributions?
Content scheduling and management
- How will the workflow and editorial calendar be managed and communicated to encourage contribution?
- Who will monitor the correct indexation, tagging and searchability of a document on the system?
- How will document structure be enforced to ensure usability and fitness for purpose?
- How will version control be managed?
- Who will rewrite and check documentation back with the original author or creator to ensure consistency and that what is written is what was intended?
- How will references within documents be checked?
- How will feedback be captured to facilitate system development, and how will continuous AI improvement be iterated and managed?
…
As in the sidebar to the right, the menu of pieces in this series runs as follows:
Start here to build new, smarter AI-driven business productivity
How expectations held of even the best social workplace software can fall short
Challenges of mapping organisational knowledge for AI
What makes managing workplace social content different
This basic AI challenge is present in every organisation
In capturing workplace knowledge, the devil is always in the detail
The lost opportunity of poor documentation
You need a process for commissioning new material
Questions to ask when trying to create the documentation that can deliver superior AI